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Abstract: In the noncommutative gauge-theoretical formulation of Langman and Szabo, apparently it appears that the 

torsion generated there is a generalized one i.e. it may containvector, axial vector and tensor components. However, when we 

transcribe the noncommutative gauge theory in terms of the Maxwell gauge theory using the Seiberg-Wittencorrespondence, 

we have noted that upto the first order in the noncommutative parameter, this effectively can be taken to induce a change in 

chiral anomaly and hence theassociated torsion should be an axial vector one. The noncommutative gauge symmetriesgive a 

very natural and explicit realizations of the mixing of space-time and internal symmetries which is a characteristic feature of 

the conventional gauge theory of gravity. Thegauge fields of the dimensionally reduced noncommutative Yang-Mills theory 

map ontoaWeitzenbӧck space time and a teleparallel theory of gravity arises as the zero curvature reduction of a Poincare 

gauge theory which induces an Einstein-Cartan space-timecharacterized by connections with both nonvanishing torsion and 

curvature. However, theteleparallelism equivalent of general relativity involves all the components of torsion. Thechiral 

anomaly in the Einstein-Cartan space U4 is characterized by the topological invariants like Pontryagin density as well as the 

Nieh-Yan density when the latter term involvesthe length scale governed by the measure of noncommutativity of space points. 

It is shownthat we have discussed the equivalence of this formalism with noncommutative U(1) Yang Mills theory. 
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1. Introduction 

A local field theory can be obtained by restricting 

noncommutative Yang-Mills fields such thatthe symmetry 

group contains diffeomorphism invariance. Noncommutative 

gauge symmetriesgive a very natural and explicit realizations 

of the mixing of space-time and internal symmetrieswhich is 

a characteristic feature of the conventional gauge theory of 

gravity. The gauge fields ofthe dimensionally reduced 

noncommutative Yang-Mills theory map onto a Weitzenbӧck 

spacetime and a teleparallel theory of gravity arises as the 

zero curvature reduction of a Poincaregauge theory which 

induces an Einstein-Cartan space-time characterized by 

connections withboth nonvanishing torsion and curvature. It 

has been sharp out that in the manifold 4 2M Z× where the 

discrete space corresponds to a direction-vector, 2Z  

symmetry breaking leads tochiral anomaly which is 

responsible for the topological origin of mass and describes 

electroweaktheory in a consistent way. Thus as in the case of 

a noncommutative manifold where 2Z isa two-point space 

there appears to be a connection between gravity and 

electroweak theoryin this formalism this is achieved through 

the realization of chiral anomaly and torsion. Herewe shall 

study the noncommutative space-time having the structure 

4 2M Z× where 2Z isnot a two point space but describes a 

‘direction-vector’ attached to a space-time point. It isshown 

that this also leads to a torsioned space-time such that general 

relativity is describedas a teleparallel gravity. However 

unlike noncommutative Yang-Mills theory which involvesthe 

symplectic area preserving diffeomorphism, here we have 

deformation of the symplectic structure. Indeed this 

deformation of the symplectic structure is related to the Berry 

phasewhich is associated with chiral anomaly and this leads 

to a torsioned space-time. 

In section 2 we shall discuss teleparallel gravity in the 

framework of this geometry and equivalence with 

theformulation of noncommutative gauge theory. 
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2. NoncommutativeGauge Theory, 

Chiral Anomaly and Torsion 

Langmann and Szabo [1] have shown how 

noncommutative (1)U Yang-Mills theory on the space 

n n
R R× can generate a theory of gravitation on n

R . Let ABG

be a flat metric on 2n
R . Thestandard action for Yang-Mills 

theory is defined by 

' '

' '

2

21 ˆ ˆdet ( )
2

n

n AA BB
AB A B

R

S d GG G F Fξ ξ= ∗∫          (1) 

where ξ denotes local coordinates of 2n
R given by 

( , )
a

x y
µξ =  where , 1, 2.......,a nµ = . Thenoncommutative 

field strength is given by 

ˆ ˆ ˆ ˆ ˆ ˆˆ [ ]AB A B B A A B B AF A A e A A A A= ∂ − ∂ + ∗ − ∗         (2) 

For completeness, we recapitulate here some of the crucial 

features of their observation. Thenoncommutativity 

parameters are taken to be of the block form 

' '

' '

2

21 ˆ ˆ( ) ( )
2

n

n AA BB
AB A B

R

S d W F Fξ ξ ξ= ∗∫               (3) 

For completeness, we recapitulate here some of the crucial 

features of their observation. Thenoncommutativity 

parameters are taken to be of the block form 

b
AB

a ab

µν µ

ν

θ θ
θ

θ θ

 
=  
  

with 0abµνθ θ= =           (4) 

The flat metric of 2n
R is taken to be 

b
AB

a ab
g

µν µ

ν

η η
η η

 
=  
  

with 0abµνθ θ= =          (5) 

The linear subspace of smooth functionα on 2n
R are taken 

to be linear in the coordinatesy 

( ) ( )
a

a x yα ξ α=                                  (6) 

We now define 

( )
n

g Vect R=  

a
aX

x

µ
α µθ α ∂= −

∂
                                (7) 

so that we can have a representation of the Lie algebra 

[ , ][ , ] , ,X X X gα β α β α β∗= ∀ ∈                     (8) 

Here, g can be identified with the Lie algebra of 

connected difeomorphism of n
R . Defining 

1( ) ( ) a
af f x yξ =  and 0 ( ) ( )g g xξ =                    (9) 

we have the star product rule 

1 0 1
( ) ( ) ( ) ( ) ( )

2

a a
a af g g x f x y f x g xµ

µξ θ∗ = − ∂ (10) 

From this we can consider the gauge transformation rule 

a
a

µ
µφ θ α φ∂ = − ∂                                (11) 

Under a global transformation x x eµ µ µ→ + , the scalar 

fields transform infinitesimally as 

( ) ( ) ( )x x e xµ
µφ φ φ→ + ∂                       (12) 

Since 

1( ) ( ) [ , ] ( )a
ax y xµ µφ θ φ−∂ = − ∗                  (13) 

we can identify
a

y  with the holonomic derivative generators 

aµ
µθ− ∂  of the n-dimensional translational group T  of

n
xR . 

This helps us to write the covariant derivative 

a
ae ν

µ µ µ νω θ∇ = ∂ − ∂                         (14) 

where aµω are gauge fields corresponding to the gauging of 

the translation group. Now defining curvature of the gauge 

field 

ˆ ( ) a
aF yµν µνξ = Ω                            (15) 

where 

( )b
a a a b a b ae λ

µν µ ν ν µ ν λ µ µ λ νω ω θ ω ω ω ωΩ = ∂ − ∂ + ∂ − ∂  (16) 

and replacing 
a

y by 
aν

νθ− ∂ we note that the covariant 

derivative µ∇ defines a nonholonomicbasis of the tangent 

bundle with nonholonomicity given by the field strength 

tensor. Thecommutator of covariant derivatives is given by 

( , ) T λ
µ ν µν λ∇ ∇ = ∇                             (17) 

This commutation relation identifies T λ
µν or equivalently 

noncommutative gauge field strength aµνΩ as the torsion 

tensor fields of vacuum space-time induced by the presence 

of a gravitationalfield. This induces a teleparallel structure of 

space-time through the Weitzenbӧckconnectionwith 

nonvanishing torsion and vanishing curvature. Indeed the 

torsion T λ
µν measures the noncommutativity of displacement 

of points in the flat space-time
n
xR . It is dual to the 

Riemanncurvature tensor which measures noncommutativity 

of vector displacements in a curved space-times. Now we 

consider the equivalence of this formalism of gravity from 

noncommutative (1)U Yang-Mills field with that attained 



91 Subhamoy Singha Roy:  Quantum Field Theory on Noncommutative Curved Space-times and  

Noncommutative Gravity 

from the noncommutative geometry 4 2M Z×  where 

spacetime coordinates are extended by (2, )SL C  gauge fields 

and torsion is obtained from chiralanomaly. Indeed we can 

identify the position and momentum operators as 

( )
Q

i A
p

µ
µ

µω
∂= − +

∂
 

( )
P

i A
q

µ
µ

µω
∂= − +

∂
                           (18) 

where ω is the dimensionless variable, 
lmc

ω = ℏ
. Here qµ is 

the space-time point in Minkowski space 4M  and pµ its 

conjugate representing the momentum variable. We have 

pointed out thatthe gauge theoretical extension of space-time 

and momentum coordinate given by eqn.(18) effectively 

deforms the symplectic structure. Indeed from equation (18) 

we note that the symplectic form of the phase space will now 

be given b 

1

2

ij
i jg dp dqΩ = Λ                            (19) 

thesymplectic form is given by eqn.(19) where the matrix ij∆
is associated with the gaugefield strength. Indeed by 

replacing the indices i, j by µ, ν, we may associate it with the 

fieldstrength ( )Fµν ξ
�

with ( , )x Pξ =
� ��

. Now following 

eqn.(15) we write 

( ) a
aF λ

µν µν λξ θ= Ω ∂
�

                      (20) 

where aµνΩ is the field strength associated with the gauge 

field aµω  given by eqn.(16). It isnoted that aνθ here 

effectively corresponds to the matrix
ij

j

 
ij ij ij

g j= + ∆ℏ                              (21) 

in eqn.(21) and represents the usual symplectic structure. To 

trace the nature of the gauge field aµω , we decompose it in 

the form 

( ) a
a x W xν

µ µ νω θ=                        (22) 

Where 

3

a a x
i

r

ν νλ λθ µε=                           (23) 

aνλε being the fundamental Levi-Civita tensor. In eqn. (23) 

µappears as the monopole strength. It may be noted that aνθ  

here is essentially related to the noncommutativity of 

momentum space. Indeed when we consider that the 

symplectic matrix is not a constant one but dependent 

onxorp, it violates the associativity property. The failure of 

the Jacobi identity 

[ ,[ , ]] [ ,[ , ]] [ ,[ , ]] 0
i j k j k i k i j

x x x x x x x x x+ + ≠          (24) 

implies the presence of the dual monopole which is 

analogous to the failure of the Jacobiidentity between 

momentum implying the presence of the Dirac monopole [2]. 

Thus replacing the constant symplectic matrix by the gauge 

field strength Fµν effectively implies that the corresponding 

gauge field is operative in the presence of a magnetic 

monopole. This essentially indicates that the gauge field Wµ

in eqn. (22) should be a non-Abelian one. This follows from 

the fact that we can assciate the monopole strength µ with the 

Pontryagin index q associated with the θ - term in non-

Abelian gauge field. In fact, we have the relation [3] 

4

2

1
2

16
q Tr F F d xµν µνµ

π
= = ∗∫                (25) 

The hidden Abelian gauge field in a non-Abelian gauge 

theory associated with the topological θ -term F Fµν µν∗ in the 

Lagrangian may be viewed as if in the gauge orbit space, the 

position of a particle is indicated by A (non-Abelian gauge 

potential) moving in the space U of non-Abelian gauge 

potentials under the influence of an Abelian electromagnetic 

potential [4, 5]. Wecan write 

1 1
A g dg g ag

− −= +                              (26) 

where ,A A dx a a dxµ µ
µ µ= = and ( )g x is a matrix associated 

with the gauge transformation. The space of gauge orbits 

/U G where Gdenotes the space of local transformations of

( )g x  consists of the point ( )a x . Recalling that 3 ( )G ZΠ =  

for all simple non-Abelian groups G and

2 ( ) 0, ( ) 0nG UΠ = Π = for all n , we have 

1( / ) ( ), 1n nU G G n−Π = Π 〉                       (27) 

That means in 3 + 1 dimension 

1 0 3( / ) ( ) ( )U G G G ZΠ = Π = Π =             (28) 

This equality 0 3( ) ( )G G ZΠ = Π = follows from the 

condition that the gauge transformation ( )g x  approaches 

constant independent of the direction of x  as x α→ . Thus 

/U G  is multiplyconnected and has the topology of a ring 

and the corresponding field strength corresponds to a vortex 

line which is topologically equivalent to a magnetic flux line. 

Now we note that when a particle moves in the presence of a 

magnetic monopole, the angular momentum is given by 

1 3
ˆ, , 1, ,...............

2 2
J r p rµ µ= × − = ± ±
� � �

   (29) 

In case
1

2
µ = , we can associate this with a spinor and in 
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view of this we consider Wµ as an (2)SU  gauge field. In 3+1 

dimension, the group structure can be generalized to 

(2, )SL C SL. Thuswe find that the torsion generated by the 

noncommutative gauge field theory may be consideredto be 

equivalent to the torsion generated by the (2, )SL C  gauge 

theory in noncommutativespace 4 2M Z× . 

We have observed in the previous section that the 

noncommutative manifold 4 2M Z×  induces torsion through 

chiral anomaly which is related to the Berry Phase associated 

with the deformation of the symplectic structure. The 

formulation of noncommutativeU(1) Yang –Mills theory also 

implicitly induces the change in chiral anomaly. However, in 

this case we have area preserving diffeomorphism. Indeed, 

the association of the gauge field aµω  with the gaugefield 

Wµ in presence of a monopole related to theθ -term in non-

Abelian gauge field theory effectively relates the torsion term 

associated with the noncommutative (1)U  gauge field 

theorywith the chiral anomaly. In fact, the topological term

Tr F Fµν µν∗ effectively corresponds to thedivergence of the 

axial vector current and hence we may view that the torsion 

is of axial vectorin nature. This can be shown in a more 

explicit form from the following considerations. 

Thenoncommutative field strength constructed from the 

potential Âµ is given by 

ˆ ˆ ˆ ˆ ˆ ˆˆ [ ]F A A g A A A Aµν µ ν ν µ µ ν ν µ= ∂ − ∂ + ∗ − ∗        (30) 

when we have the Lagrangian 

1ˆ ˆ ˆ
4

L F F µν
µν= − ∗                               (31) 

In terms of the conventional Maxwell term 

F A Aµν µ ν ν µ= ∂ − ∂                            (32) 

it turns out that to first order in αβθ we can express Âµ and 

F̂µν as follows [6] 

1ˆ ( )
2

A A A A Fαβ
µ µ α β µ βµθ= − ∂ +                   (33) 

F̂ F F F A Fαβ αβ
µν µν αµ βν α β µνθ θ= + − ∂          (34) 

where g is absorbed in θ . The tensor αβθ is associated with 

the star product which is defined as 

'

'2( )( ) ( ) ( )

i

x x
f g x e f g g xαβ

α βθ
=

∗ = ∂ ∂            (35) 

Apart from the total derivative term, the Lagrangian L̂ is 

given by 

21 1 1ˆ ( )
4 8 2

L F F F F F F F F O
µν αβ µν αβ µν

µν αβ µν µα νβθ θ θ= − + − + (36) 

It is well known that star product effectively involves a 

background magnetic field [7] and sothe second and the third 

terms in equations (34) and (36) correspond to the interaction 

of thisbackground field with the Maxwell field. When we 

consider the interaction of the chiral current with the 

noncommutative gauge field having the field strength to the 

first order in θ , we have 

F̂ F F F A Fαβ αβ
µν µν αµ βν α β µνθ θ= + − ∂ F Fµν µν= + ɶ  (37) 

We note that the chiral anomaly will be modified as 

2

1
[ ]

8
Tr F F F F F Fµν µν µν µν µν µνπ

∗ ∗ ∗+ +∫ ɶ ɶ ɶ          (38) 

This implies that the induced background magnetic field 

associated with the star producteffectively changes the 

chiral anomaly. In the noncommutative gauge-theoretical 

formulation of Langman and Szabo, apparently it appears 

that the torsion generated there is a generalized one i.e. it 

may contain vector, axial vector and tensor components. 

However, when we transcribe the noncommutative gauge 

theory in terms of the Maxwell gauge theory using the 

Seiberg-Witten correspondence, we have noted that upto 

the first order in the noncommutativeparameter θ , this 

effectively can be taken to induce a change in chiral 

anomaly and hence the associated torsion should be an axial 

vector one. However, the teleparallelism equivalent of 

general relativity involves all the components of torsion. In 

fact, if we denote the Lagrangian in teleparallel gravity as 

[8] 

(1) (2) (3)

2

1 1
( 2 )

22
TL T T T T

l

α
α α α

∗= − ∧ − + +         (39) 

where
(1)

Tα ,
(2)

Tα ,
(3)

Tα corresponds to tensor, vector (trace) 

and axial vector components of torsion, its equivalence with 

general relativity arises from the geometrical identity 

{ } 21 1
( )

2 2
TR R l L d e T

αβαβ α
αβ αβ αη η ∗− ∧ + ∧ + = ∧  (40) 

where R
αβ is the curvature associated with the Einstein-

Cartan space-time, 
{ }

R
αβ

is the curvature in Riemannian 

space-time and ( )e eαβ α βη ∗= ∧ . From this we note that in 

Weitzenbӧckspace-time with vanishing Riemann-Cartan 

space curvature 0Rαβ =  the Lagrangian TL isupto a 

boundary term equivalent to the Einstein-Hilbert Lagrangian. 

As the teleparallelLagrangian involves all the components of 

torsion with specific coefficients, only the axial 

vectorcomponent of torsion can contribute if by any 

constraint the contributions of the vector andtensor 

components in the action cancel. 
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3. Discussion 

In our present framework, we observe that 2Z symmetry 

breaking leads to chiral anomaly. In recent paper [9-11] it has 

been shown that chiral anomaly gives rise to the 

topologicalorigin of mass. Besides chiral anomaly is 

associated with the nonvanishing value of the Barryphase 

factor [12, 13]. This is linked up with the conserved charge 

through Direc quantizationcondition. So we observed that the 

symmetry breaking in the noncommutative space- timegiven 

by 4 2M Z×  when the discreates space is considered as the 

internal space not only generatemass but also a locally 

defined conserved charge. Recently it has been pointed out 

that the N-Ydensity may be taken to arise from the 

noncommutativity of space when the space-time manifoldis 

4 2M Z× , we note that gravitational constant may be 

considered to be a manifestation of thenoncommutative 

geometry. It may be remarked that in the noncommutative

(1)U  Yang-Millsfield theoretical formulation also the 

gravitational constant is found to be associated with thegauge 

coupling constant and noncommutativity scale [1]. 

4. Conclusion 

Finally We may add that in flat space as the manifold 

4 2M Z×  is found to be associatedwith the quantization of a 

fermion when the 2Z  symmetry breaking leads to chiral 

anomalywhich is responsible for the origin of mass [14], it 

is very natural to link up gravitation withthe 

noncommutativity of space and in this way the association 

of gravitation with quantummechanics becomes relevant 

[15, 16]. Thus the noncommutative geometry paves the path 

to havea reconciliation of general relativity and quantum 

mechanics. 
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