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Abstract: The shortest route technique is a fundamental problem in various fields, including transportation, logistics, network 

routing, and robotics. In this paper, we have discussed a prominent algorithm, namely Dijkstra's algorithm, and propose an 

alternative method for addressing these problems. A thorough comparison is conducted between the proposed algorithm and 

Dijkstra's algorithm, considering factors such as solution accuracy and computational efficiency. The experimental results 

indicate that our proposed method yields identical results to the existing method but with significantly reduced computation time. 

By leveraging advancements in computational power and algorithmic design, our proposed technique addresses the limitations of 

existing methods and offers new avenues for optimizing route planning processes. We begin by reviewing the classical 

algorithms commonly used for solving the shortest route problem, such as Dijkstra's algorithm. While this algorithm has proven 

its effectiveness over the years, it faces challenges when applied to large-scale networks and real-time applications due to its 

computational complexity. Our approach incorporates advanced data structures and optimization strategies to efficiently handle 

massive network graphs. Additionally, we integrate machine learning models to learn from historical data, allowing for the 

prediction of traffic patterns and considering dynamic factors in route planning. 
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1. Introduction 

The introduction of shortest route problems in the field of 

Operations Research (OR) has been instrumental in solving 

various optimization challenges related to transportation, 

logistics, and network planning. The shortest route problem 

aims to find the most efficient path or route between two 

locations in a network, considering factors such as distance, 

time, cost, or other relevant criteria. The development of 

techniques to address the shortest route problem has 

significantly impacted industries and sectors that rely on 

efficient transportation and logistics operations. 

The concept of the shortest route problem can be traced 

back to the early days of OR when researchers recognized the 

need for mathematical models to optimize transportation and 

logistics decisions. The study of the shortest route problem 

gained prominence during World War II, where it played a 

crucial role in military logistics and strategic planning. 

The shortest route problem is typically framed within the 

framework of graph theory, where a network is represented 

by a graph consisting of nodes and edges. Nodes represent 

locations or points of interest, and edges represent their 

connections or routes. Each edge is assigned a weight or cost, 

such as distance or travel time, which reflects the effort 

required to traverse that route. [2] 

Various algorithms have been developed to solve the 

shortest route problem efficiently. One of the most 

well-known algorithms is Dijkstra's algorithm, proposed by 

Dutch computer scientist Edsger Dijkstra in 1956. Dijkstra's 

algorithm finds the shortest path from a specified origin node 

to all other nodes in a network. It has been widely used in 

transportation planning, logistics optimization, and network 

routing. 
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The introduction of shortest route problems in OR has 

provided decision-makers with powerful tools to optimize 

transportation and logistics operations. By finding the most 

efficient routes, organizations can reduce transportation costs, 

minimize delivery times, improve customer satisfaction, and 

enhance overall operational efficiency. 

2. Shortest Path Algorithms 

2.1. Dijkstra’s Method [1] 

Suppose we want to find the shortest path from a given 

node	� to other nodes in a network (one-to-all shortest path 

problem) [4]. 

1) Dijkstra’s algorithm solves such a problem 

a) It finds the shortest path from a given node � to all 

other nodes in the network 

b) Node � is called a starting node or an initial node 

2) How is the algorithm achieving this? [5] 

a) Dijkstra’s algorithm starts by assigning some initial 

values for the distances from node �  and to every 

other node in the network. 

b) It operates in steps, where at each step the algorithm 

improves the distance values. [6] 

c) At each step, the shortest distance from node �  to 

another node is determined. 

2.1.1. Algorithm Steps for Dijkstra’s Algorithm [1] 

Step 1. (Initialization) 

1) Assign the zero-distance value to node	�, and label it as 

Permanent. [The state of node	� is (0, �).] [7] 

2) Assign to every node a distance value of ∞ and label 

them as Temporary. [The state of every other node is 

(∞, 	).] [8] 

3) Designate the node s as the current node. 

Step 2. (Distance Value Update and Current Node 

Designation Update) [9] 

Let 
 be the index of the current node. 

1) Find the set � of nodes with temporary labels that can be 

reached from the current node	
 by a link (
, �). Update 

the distance values of these nodes. For each � ∈ �, the 

distance value �j of node � is updated as follows: 

New �� = �
�{�� , �� + ���};  where ���  is the cost of 

link (
, �), as given in the network problem. [10] 

2) Determine a node	� that has the smallest distance value 

�� 	among all nodes � ∈ � , find 	� ∗  such that, 	�
�	� ∈

	�, �� = ��∗ 

3) Change the label of node � ∗ to permanent and designate 

this node as the current node. 

Step 3. (Termination Criterion) [10] 

1) If all nodes that can be reached from node � have been 

permanently labeled, then stop - we are done. 

2) If we cannot reach any temporary labeled node from the 

current node, then all the temporary labels become 

permanent - we are done. 

3) Otherwise, go to Step 2. 

2.1.2. Example of Dijkstra’s Algorithm 

We want to find the shortest path from node 1 to all other 

nodes using Dijkstra’s algorithm of network which is shown 

in figure 1. 

Step 1 (Initialization) 

1) Node 1 is designated as the current node 

2) The state of node 1 is (0, �). 

3) Every other node has state (∞, 	) 

The associated figure is figure 2. 

Step 2 (Distance Value Update and Current Node 

Designation Update) 

1) Nodes	2, 3, and 6 can be reached from the current 

node 1. 

2) Update distance values for these nodes 

d = �
�	{∞, 0 + 7} = 7	

d" = �
�	{∞, 0 + 9} = 9	

d$ = �
�	{∞, 0 + 14} = 14	

3) Now, among the nodes 2, 3, and 6, node 2 has the 

smallest distance value. 

4) The status label of node 2 changes to permanent, so its 

state is 	(7, �) , while the status of nodes 3  and 6 

remains temporary. 

5) Node 2 becomes the current node. 

The associated figure is figure3. 

Step 3 

From the graph at the end of Step 2 we see that we are not 

done, not all nodes have been reached from node 1, so we 

perform another iteration (back to Step 2). 

Another Implementation of Step 2 

1) Nodes 3 and 4 can be reached from the current node 

2. 

2) Update distance values for these nodes 

d" = �
�	{9, 7 + 10} = 9	

d$ = �
�	{∞, 7 + 15} = 22	

3) Now, between the nodes 3  and 4  node 3  has the 

smallest distance value 

4) The status label of node 3 changes to permanent, while 

the status of node 6 remains temporary. 

5) Node 3 becomes the current node. 

The associated figure is figure 4. 

We are not done (Step 3 fails), so we perform another Step 

2 

Another Step 2 

1) Nodes 6 and 4 can be reached from the current node 

3. 

2) Update distance values for them 

d' = �
�	{22, 9 + 11} = 20	

d$ = �
�	{14, 9 + 2} = 11	

3) Now, between the nodes 6	and 4  node 6  has the 

smallest distance value. 

4) The status label of node 6 changes to permanent, while 
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the status of node 4 remains temporary. 

5) Node 6 becomes the current node. 

The associated figure is figure5. 

We are not done (Step 3 fails), so we perform another Step 

2 

Another Step 2 

1) Node 5 can be reached from the current node	6 

2) Update distance value for node 5 

d( = �
�	{∞, 11 + 9} = 20 

3) Now, node 5  is the only candidate, so its status 

changes to permanent. 

4) Node 5 becomes the current node. 

5) From node 5 we cannot reach any other node. Hence, 

node	4 gets permanently labeled and we are done. 

The final figure is figure6. 

2.2. Proposed Modified Approach of Dijkstra’s Method 

For my proposed method, the initial step is similar to 

Dijkstra’s, and I will use the Floyd-Warshall method in the 

middle of my procedure if needed. For initializing we have to 

select a node of the network as the initial node from where we 

go any other node of the network and mark it as permanent. 

Now select the adjacent node(s) of the permanent node and 

identify the ingoing and outgoing flow of this (these) adjacent 

node(s). We have to mark the adjacent node as permanent with 

its distance value if it has only one ingoing flow, otherwise, 

mark it as temporary with its distance value. If there is more 

than one ingoing flow to the adjacent node then we have to 

apply triple operation to find the shortest distance. The triple 

operation is as follows (figure 7): [11] 

Given three nodes 
, �, and ) in the above Figure with the 

connecting distances shown on the three arcs, it is shorter to 

reach	� from 
 passing through ) if 

��* + �*� < ���  

In this case, it is optimal to replace the direct route from 


 → � with the indirect route 
 → ) → �. 

Now let -  is the adjacent node to the permanent node 

which has more than one ingoing flow and let .	is the node 

that is adjacent to node	- and is used for performing the triple 

operation, then it has to be sure that node . is labeled as 

permanent if not the make it as permanent then apply the triple 

operation. We have to continue this process until all the nodes 

are labeled as permanent. 

For labeling a nod as permanent we have to choose the 

minimum distance value for finding the shortest route from 

starting node to finishing node. After labeling all nodes as 

permanent we can find the shortest path from the back 

calculation. 

2.2.1. Algorithm for Proposed Method 

Step 1 

Select the source node and label it as permanent. 

Step2 

Select the adjacent nodes to the recent permanent node and 

label it as a permanent node with its distance value if it has 

only one ingoing flow, otherwise, label it as a temporary 

node and go to step 3. 

Step 3 

Apply triple operation for labeling the node as permanent 

with minimum distance value. It may happen that an adjacent 

node of the current permanent node is labeled as permanent 

after a few iterations depending on the distance value of arc 

and ingoing flow towards the node. [14] 

Step 4 

Check whether all the nodes are labeled as permanent, if 

not, go to step 2, otherwise, go to step 5. 

Step 5 

Stop, our process is done. The shortest distance from the 

source node to each node can be found in the distances array, 

and the shortest path from the source node to each node can 

be reconstructed using the previous node information. 

Note: This algorithm assumes that the graph does not 

contain negative edge weights. If the graph contains negative 

edge weights, alternative algorithms like the Bellman-Ford 

algorithm or specialized versions of Dijkstra's algorithm, 

such as Dijkstra's algorithm with a min-priority queue, 

should be used. [13] 

It's worth mentioning that the algorithm can be optimized 

using a priority queue data structure to efficiently find the 

unvisited node with the smallest tentative distance. This 

helps improve the overall runtime complexity of the 

algorithm. [12] 

2.2.2. Example of Proposed Method 

Here we solve the previous problem (figure 1). 

Step 1 

We select node 1  as the initial node and labeled it as 

permanent where the network is becomes as figure 8. 

Step 2 

The adjacent nodes of node 1 is node 6, node 3, and node 

2 where node 2 has only one ingoing flow so we label it as 

permanent with its distance value and label the other nodes as 

temporary with its distance value as shown in figure 9. 

Step 3 

For applying triple operation in the set of node {1, 3, 6} 

where we want to go from node 1 to node 6 via node 3 but 

node 3 is not labeled as permanent, so we have to make node 

3  permanent first. For this, we have to apply the triple 

operation in the set of node {1, 2, 3} and we get 

�/ + � " = 7 + 10 = 17 > �/" = 9 

So we label node 3 as permanent with distance value 9. 

Now for the set {1, 3, 6}	we get 

�/" + �"$ = 9 + 2 = 11 < �/$ = 14 

So we label node 6 as permanent with distance value 11. 

Here the adjacent node of node	6 is node	5 and it has two 

ingoing flows so label it as temporary with distance value 

11 + 9 = 20 but here we can’t apply triple operation because 

there is no direct link between node	6	and node 4. Node 4 is 

the adjacent node of node	3 and node 2. Here node 4 has two 
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ingoing flows but here we don’t apply triple operation because 

this is adjacent to both node 	3  and node 	2  and since the 

distance value of node 4 from node	3 is smaller than from 

node 2 so we label node 4 as permanent with distance value 

20	as figure 10. 

Now since node 4 is permanent so the distance value of 

node 5 via node	4 is 26 which is greater than 20 so label 

node 5 as permanent with distance value 20 as figure 11. 

And we are done. 

Here the shortest route from node 1 to node 5 is 5	 ←

	6	 ← 	3	 ← 	1 and the shortest distance is 20, which is the 

same as Dijkstra’s method. 

3. Figures Used in Both Methods 

3.1. Figure Used in Dijkstra’s Method 

 
Figure 1. Network to solve [3]. 

 
Figure 2. Network for step 1. 

 
Figure 3. Network for step 2. 

 
Figure 4. Network for another implementation of step 2. 

 
Figure 5. Network for another step 2. 

 
Figure 6. Final Network 

3.2. Figure Used in Proposed Method 

 
Figure 7. Figure for Triple Operation. 
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Figure 8. Network for step 1. 

 
Figure 9. Network for step 2. 

 
Figure 10. Network for step 3. 

 
Figure 11. Final Network. 

4. Conclusion 

In Dijkstra’s method node which has a minimum weight 

from the current permanent node is made permanent and take 

this node as a current node where the unvisited nodes are 

labeled as �∞, 2). On the other hand, in my proposed method 

nodes which are adjacent to the current permanent node are 

made permanent (where possible) and for this purpose, we use 

triple operation if necessary. 

The problem that I solved recently with the help of my 

proposed method takes 4 steps whereas Dijkstra’s method 

takes 6	steps. Moreover, in my proposed method calculation 

is comparatively easy and convenient which minimizes the 

labor and processing time. 

Our proposed method offers significant improvements in 

computation time and solution quality, making it highly 

suitable for real-time applications in transportation, logistics, 

and other related domains. Future research directions include 

further optimization and integration with emerging 

technologies to enhance the applicability and scalability of our 

technique. 
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