

American Journal of Science, Engineering and Technology
2023; 8(3): 146-151

http://www.sciencepublishinggroup.com/j/ajset

doi: 10.11648/j.ajset.20230803.14

ISSN: 2578-8345 (Print); ISSN: 2578-8353 (Online)

A Modified Approach of Dijkstra’s Method for Finding
Shortest Path in a Weighted Directed Graph

Md. Mehedi Hassan
*
, Md. Asadujjaman, Md. Golam Robbani

Department of Mathematics, University of Dhaka, Dhaka, Bangladesh

Email address:

*Corresponding author

To cite this article:
Md. Mehedi Hassan, Md. Asadujjaman, Md. Golam Robbani. A Modified Approach of Dijkstra’s Method for Finding Shortest Path in a

Weighted Directed Graph. American Journal of Science, Engineering and Technology. Vol. 8, No. 3, 2023, pp. 146-151.

doi: 10.11648/j.ajset.20230803.14

Received: June 8, 2023; Accepted: June 25, 2023; Published: July 31, 2023

Abstract: The shortest route technique is a fundamental problem in various fields, including transportation, logistics, network

routing, and robotics. In this paper, we have discussed a prominent algorithm, namely Dijkstra's algorithm, and propose an

alternative method for addressing these problems. A thorough comparison is conducted between the proposed algorithm and

Dijkstra's algorithm, considering factors such as solution accuracy and computational efficiency. The experimental results

indicate that our proposed method yields identical results to the existing method but with significantly reduced computation time.

By leveraging advancements in computational power and algorithmic design, our proposed technique addresses the limitations of

existing methods and offers new avenues for optimizing route planning processes. We begin by reviewing the classical

algorithms commonly used for solving the shortest route problem, such as Dijkstra's algorithm. While this algorithm has proven

its effectiveness over the years, it faces challenges when applied to large-scale networks and real-time applications due to its

computational complexity. Our approach incorporates advanced data structures and optimization strategies to efficiently handle

massive network graphs. Additionally, we integrate machine learning models to learn from historical data, allowing for the

prediction of traffic patterns and considering dynamic factors in route planning.

Keywords: Network Routing, Dijkstra's Algorithm, Floyd's Algorithm, Triple Operation, Vehicle Routing Problem

1. Introduction

The introduction of shortest route problems in the field of

Operations Research (OR) has been instrumental in solving

various optimization challenges related to transportation,

logistics, and network planning. The shortest route problem

aims to find the most efficient path or route between two

locations in a network, considering factors such as distance,

time, cost, or other relevant criteria. The development of

techniques to address the shortest route problem has

significantly impacted industries and sectors that rely on

efficient transportation and logistics operations.

The concept of the shortest route problem can be traced

back to the early days of OR when researchers recognized the

need for mathematical models to optimize transportation and

logistics decisions. The study of the shortest route problem

gained prominence during World War II, where it played a

crucial role in military logistics and strategic planning.

The shortest route problem is typically framed within the

framework of graph theory, where a network is represented

by a graph consisting of nodes and edges. Nodes represent

locations or points of interest, and edges represent their

connections or routes. Each edge is assigned a weight or cost,

such as distance or travel time, which reflects the effort

required to traverse that route. [2]

Various algorithms have been developed to solve the

shortest route problem efficiently. One of the most

well-known algorithms is Dijkstra's algorithm, proposed by

Dutch computer scientist Edsger Dijkstra in 1956. Dijkstra's

algorithm finds the shortest path from a specified origin node

to all other nodes in a network. It has been widely used in

transportation planning, logistics optimization, and network

routing.

 American Journal of Science, Engineering and Technology 2023; 8(3): 146-151 147

The introduction of shortest route problems in OR has

provided decision-makers with powerful tools to optimize

transportation and logistics operations. By finding the most

efficient routes, organizations can reduce transportation costs,

minimize delivery times, improve customer satisfaction, and

enhance overall operational efficiency.

2. Shortest Path Algorithms

2.1. Dijkstra’s Method [1]

Suppose we want to find the shortest path from a given

node	� to other nodes in a network (one-to-all shortest path

problem) [4].

1) Dijkstra’s algorithm solves such a problem

a) It finds the shortest path from a given node � to all

other nodes in the network

b) Node � is called a starting node or an initial node

2) How is the algorithm achieving this? [5]

a) Dijkstra’s algorithm starts by assigning some initial

values for the distances from node � and to every

other node in the network.

b) It operates in steps, where at each step the algorithm

improves the distance values. [6]

c) At each step, the shortest distance from node � to

another node is determined.

2.1.1. Algorithm Steps for Dijkstra’s Algorithm [1]

Step 1. (Initialization)

1) Assign the zero-distance value to node	�, and label it as

Permanent. [The state of node	� is (0, �).] [7]

2) Assign to every node a distance value of ∞ and label

them as Temporary. [The state of every other node is

(∞,).] [8]

3) Designate the node s as the current node.

Step 2. (Distance Value Update and Current Node

Designation Update) [9]

Let
 be the index of the current node.

1) Find the set � of nodes with temporary labels that can be

reached from the current node	
 by a link (
, �). Update

the distance values of these nodes. For each � ∈ �, the

distance value �j of node � is updated as follows:

New �� = �
�{�� , �� + ���}; where ��� is the cost of

link (
, �), as given in the network problem. [10]

2) Determine a node	� that has the smallest distance value

�� 	among all nodes � ∈ � , find 	� ∗ such that, 	�
�	� ∈

	�, �� = ��∗

3) Change the label of node � ∗ to permanent and designate

this node as the current node.

Step 3. (Termination Criterion) [10]

1) If all nodes that can be reached from node � have been

permanently labeled, then stop - we are done.

2) If we cannot reach any temporary labeled node from the

current node, then all the temporary labels become

permanent - we are done.

3) Otherwise, go to Step 2.

2.1.2. Example of Dijkstra’s Algorithm

We want to find the shortest path from node 1 to all other

nodes using Dijkstra’s algorithm of network which is shown

in figure 1.

Step 1 (Initialization)

1) Node 1 is designated as the current node

2) The state of node 1 is (0, �).

3) Every other node has state (∞,)

The associated figure is figure 2.

Step 2 (Distance Value Update and Current Node

Designation Update)

1) Nodes	2, 3, and 6 can be reached from the current

node 1.

2) Update distance values for these nodes

d = �
�	{∞, 0 + 7} = 7	

d" = �
�	{∞, 0 + 9} = 9	

d$ = �
�	{∞, 0 + 14} = 14	

3) Now, among the nodes 2, 3, and 6, node 2 has the

smallest distance value.

4) The status label of node 2 changes to permanent, so its

state is 	(7, �) , while the status of nodes 3 and 6

remains temporary.

5) Node 2 becomes the current node.

The associated figure is figure3.

Step 3

From the graph at the end of Step 2 we see that we are not

done, not all nodes have been reached from node 1, so we

perform another iteration (back to Step 2).

Another Implementation of Step 2

1) Nodes 3 and 4 can be reached from the current node

2.

2) Update distance values for these nodes

d" = �
�	{9, 7 + 10} = 9	

d$ = �
�	{∞, 7 + 15} = 22	

3) Now, between the nodes 3 and 4 node 3 has the

smallest distance value

4) The status label of node 3 changes to permanent, while

the status of node 6 remains temporary.

5) Node 3 becomes the current node.

The associated figure is figure 4.

We are not done (Step 3 fails), so we perform another Step

2

Another Step 2

1) Nodes 6 and 4 can be reached from the current node

3.

2) Update distance values for them

d' = �
�	{22, 9 + 11} = 20	

d$ = �
�	{14, 9 + 2} = 11	

3) Now, between the nodes 6	and 4 node 6 has the

smallest distance value.

4) The status label of node 6 changes to permanent, while

148 Md. Mehedi Hassan et al.: A Modified Approach of Dijkstra’s Method for Finding Shortest

Path in a Weighted Directed Graph

the status of node 4 remains temporary.

5) Node 6 becomes the current node.

The associated figure is figure5.

We are not done (Step 3 fails), so we perform another Step

2

Another Step 2

1) Node 5 can be reached from the current node	6

2) Update distance value for node 5

d(= �
�	{∞, 11 + 9} = 20

3) Now, node 5 is the only candidate, so its status

changes to permanent.

4) Node 5 becomes the current node.

5) From node 5 we cannot reach any other node. Hence,

node	4 gets permanently labeled and we are done.

The final figure is figure6.

2.2. Proposed Modified Approach of Dijkstra’s Method

For my proposed method, the initial step is similar to

Dijkstra’s, and I will use the Floyd-Warshall method in the

middle of my procedure if needed. For initializing we have to

select a node of the network as the initial node from where we

go any other node of the network and mark it as permanent.

Now select the adjacent node(s) of the permanent node and

identify the ingoing and outgoing flow of this (these) adjacent

node(s). We have to mark the adjacent node as permanent with

its distance value if it has only one ingoing flow, otherwise,

mark it as temporary with its distance value. If there is more

than one ingoing flow to the adjacent node then we have to

apply triple operation to find the shortest distance. The triple

operation is as follows (figure 7): [11]

Given three nodes
, �, and) in the above Figure with the

connecting distances shown on the three arcs, it is shorter to

reach	� from
 passing through) if

��* + �*� < ���

In this case, it is optimal to replace the direct route from

 → � with the indirect route
 →) → �.

Now let - is the adjacent node to the permanent node

which has more than one ingoing flow and let .	is the node

that is adjacent to node	- and is used for performing the triple

operation, then it has to be sure that node . is labeled as

permanent if not the make it as permanent then apply the triple

operation. We have to continue this process until all the nodes

are labeled as permanent.

For labeling a nod as permanent we have to choose the

minimum distance value for finding the shortest route from

starting node to finishing node. After labeling all nodes as

permanent we can find the shortest path from the back

calculation.

2.2.1. Algorithm for Proposed Method

Step 1

Select the source node and label it as permanent.

Step2

Select the adjacent nodes to the recent permanent node and

label it as a permanent node with its distance value if it has

only one ingoing flow, otherwise, label it as a temporary

node and go to step 3.

Step 3

Apply triple operation for labeling the node as permanent

with minimum distance value. It may happen that an adjacent

node of the current permanent node is labeled as permanent

after a few iterations depending on the distance value of arc

and ingoing flow towards the node. [14]

Step 4

Check whether all the nodes are labeled as permanent, if

not, go to step 2, otherwise, go to step 5.

Step 5

Stop, our process is done. The shortest distance from the

source node to each node can be found in the distances array,

and the shortest path from the source node to each node can

be reconstructed using the previous node information.

Note: This algorithm assumes that the graph does not

contain negative edge weights. If the graph contains negative

edge weights, alternative algorithms like the Bellman-Ford

algorithm or specialized versions of Dijkstra's algorithm,

such as Dijkstra's algorithm with a min-priority queue,

should be used. [13]

It's worth mentioning that the algorithm can be optimized

using a priority queue data structure to efficiently find the

unvisited node with the smallest tentative distance. This

helps improve the overall runtime complexity of the

algorithm. [12]

2.2.2. Example of Proposed Method

Here we solve the previous problem (figure 1).

Step 1

We select node 1 as the initial node and labeled it as

permanent where the network is becomes as figure 8.

Step 2

The adjacent nodes of node 1 is node 6, node 3, and node

2 where node 2 has only one ingoing flow so we label it as

permanent with its distance value and label the other nodes as

temporary with its distance value as shown in figure 9.

Step 3

For applying triple operation in the set of node {1, 3, 6}

where we want to go from node 1 to node 6 via node 3 but

node 3 is not labeled as permanent, so we have to make node

3 permanent first. For this, we have to apply the triple

operation in the set of node {1, 2, 3} and we get

�/ + � " = 7 + 10 = 17 > �/" = 9

So we label node 3 as permanent with distance value 9.

Now for the set {1, 3, 6}	we get

�/" + �"$ = 9 + 2 = 11 < �/$ = 14

So we label node 6 as permanent with distance value 11.

Here the adjacent node of node	6 is node	5 and it has two

ingoing flows so label it as temporary with distance value

11 + 9 = 20 but here we can’t apply triple operation because

there is no direct link between node	6	and node 4. Node 4 is

the adjacent node of node	3 and node 2. Here node 4 has two

 American Journal of Science, Engineering and Technology 2023; 8(3): 146-151 149

ingoing flows but here we don’t apply triple operation because

this is adjacent to both node 	3 and node 	2 and since the

distance value of node 4 from node	3 is smaller than from

node 2 so we label node 4 as permanent with distance value

20	as figure 10.

Now since node 4 is permanent so the distance value of

node 5 via node	4 is 26 which is greater than 20 so label

node 5 as permanent with distance value 20 as figure 11.

And we are done.

Here the shortest route from node 1 to node 5 is 5	 ←

	6	 ← 	3	 ← 	1 and the shortest distance is 20, which is the

same as Dijkstra’s method.

3. Figures Used in Both Methods

3.1. Figure Used in Dijkstra’s Method

Figure 1. Network to solve [3].

Figure 2. Network for step 1.

Figure 3. Network for step 2.

Figure 4. Network for another implementation of step 2.

Figure 5. Network for another step 2.

Figure 6. Final Network

3.2. Figure Used in Proposed Method

Figure 7. Figure for Triple Operation.

150 Md. Mehedi Hassan et al.: A Modified Approach of Dijkstra’s Method for Finding Shortest

Path in a Weighted Directed Graph

Figure 8. Network for step 1.

Figure 9. Network for step 2.

Figure 10. Network for step 3.

Figure 11. Final Network.

4. Conclusion

In Dijkstra’s method node which has a minimum weight

from the current permanent node is made permanent and take

this node as a current node where the unvisited nodes are

labeled as �∞, 2). On the other hand, in my proposed method

nodes which are adjacent to the current permanent node are

made permanent (where possible) and for this purpose, we use

triple operation if necessary.

The problem that I solved recently with the help of my

proposed method takes 4 steps whereas Dijkstra’s method

takes 6	steps. Moreover, in my proposed method calculation

is comparatively easy and convenient which minimizes the

labor and processing time.

Our proposed method offers significant improvements in

computation time and solution quality, making it highly

suitable for real-time applications in transportation, logistics,

and other related domains. Future research directions include

further optimization and integration with emerging

technologies to enhance the applicability and scalability of our

technique.

Acknowledgements

First, I would like to convey my gratitude to the almighty

Allah for giving me the opportunity to complete this thesis

paper.

I would like to convey my heartfelt thanks and gratitude to

my supervisor, Md. Asadujjaman, Assistant Professor,

Department of Mathematics, Faculty of Science, University of

Dhaka, Dhaka- 1000 , Bangladesh, who instructed me to

prepare this thesis paper and provided me with his all-out

efforts despite being busy with his daily schedule. I am very

much grateful to him for his cordial contribution.

Now I must expose my grant honor to the most respectable

Chairman, Department of Mathematics, University of Dhaka

to give me all types of opportunities to take over the thesis. I

am also grateful to the other teachers in my department.

Whenever I remind them of their attempt, kindness, and

sincerity, then it seems that I am indebted to them.

Furthermore, we extend our thanks to the academic

community and institutions that have provided access to

resources, libraries, and datasets necessary for conducting our

research. The availability of these resources has significantly

enhanced the scope and depth of our analysis.

This research was made possible through the financial

assistance provided by the scholarship, which greatly

contributed to the successful completion of this work. We

extend our deepest gratitude to “NATIONAL SCIENCE AND

TECHNOLOGY (NST) FELLOWSHIP 2022-23” for their

commitment to fostering academic excellence and their

investment in our research endeavors.

Lastly, we would like to acknowledge the support and

understanding of our families and friends, whose

encouragement and patience have been crucial throughout this

research endeavor. Their unwavering support has provided us

with the motivation and inspiration to overcome challenges

and strive for excellence.

References

[1] Taha H. A., Operations Research An Introduction, Prentice
Hall of India Pvt. Ltd, New Delhi, 1999.

[2] Winston, W. L., J. B. Goldberg, 2004, “Operations Research:
Applications and Algorithms”, Thomson Brooks.

[3] https://mathinsight.org/network_introduction.

 American Journal of Science, Engineering and Technology 2023; 8(3): 146-151 151

[4] https://www.chegg.com/homework-help/questions-and-answer
s/d-10-10-use-dijkstra-s-algorithm-findlength-shortest-path-ve
rtices-z-following-weighted-g-q69930813

[5] https://studylib.net/doc/18121752/lecture-18-solving-shortest-
path-problem--dijkstra-s-algo...

[6] https://www.uobabylon.edu.iq/eprints/publication_4_9401_14
10.pdf

[7] https://www.ques10.com/p/41050/single-source-shortest-path-
1

[8] http://mdcollege.in/wp-content/uploads/2019/08/djikstras-algo
rithm.pdf

[9] https://medium.com/@letslearnsomething95/dijkstras-shortest
-path-finding-algorithm-with-a-solvedexample-df892915b0ca

[10] https://www.coursehero.com/file/p67feerr/Distance-Value-Up
date-and-Current-Node-Designation-Update-Let-i-be-the-inde
x-of

[11] Aardal, K. I., van der Veen, J. A., & Weismantel, R. (2018). The
Traveling Salesman Problem. In 50 Years of Integer
Programming 1958-2008 (pp. 53-84). Springer.

[12] B. Korte and J. Vygen, “Network Flows,” pp. 153–184, 2000,
doi: 10.1007/978-3-662-21708-5_8.

[13] R. Danchick, “An Exact Ranked Linear Assignments Solution
to the Symmetric Traveling Salesman Problem,” OAlib, vol. 07,
no. 03, pp. 1–8, 2020, doi: 10.4236/OALIB.1106159.

[14] Z. Sun et al., “Optimal Path Finding Method Study Based on
Stochastic Travel Time,” J Transp Technol, vol. 3, no. 4, pp.
260–265, Oct. 2013, doi: 10.4236/JTTS.2013.34027.

